無聊的, 銑削是一種內徑切削工藝,其中使用刀具擴大孔或其他圓形輪廓. 其應用範圍一般從半粗加工到精加工, 所用刀具通常為單刃鏜刀 (稱為鏜桿工具).
鏜削是鏜削和銑削的一種.
用反向鏜刀加工反向鏜孔的方法稱為反向鏜孔加工.
在CNC機床上, 我們經常使用非標準工具 (偏心鏜刀, 旋轉刀片, 特殊反鏜工具) 使用 CNC 加工程序進行反向鏜孔加工.
用旋轉單刃鏜刀將工件上的預製孔擴大到一定尺寸, 從而達到切削加工所需的精度和表面粗糙度. 鏜孔一般在鏜床上進行, 加工中心和組合工具機. 主要用於加工圓柱孔 (看圖片), 螺紋孔, 盒子等工件上的孔和端面的凹槽, 支架和機器底座; 使用特殊附件時, 還可加工零件的內外球面、錐孔. 金屬構件的鏜孔精度一般可達IT9~7, 表面粗糙度Ra2.5~0.16微米.
無聊的時候, 工件安裝在工具機工作台或工具機夾具上, 鏜刀夾緊在鏜桿上 (它還可以與鏜桿集成), 由主軸帶動旋轉. 使用鏜模時, 鏜桿與主軸浮動連接, 而加工精度取決於鏜模的精度; 不使用鏜模時, 鏜桿與主軸剛性連接, 而加工精度取決於工具機的精度. Due to the large overhang distance of the boring bar, it is easy to generate vibration, and the selected cutting amount should not be large. The boring process is divided into rough boring, semi-fine boring and fine boring. The cutting speed when using high-speed steel cutter head to bore ordinary steel is generally 20-50 m/min; The cutting speed when using carbide tip, rough boring can reach 40-60 m/min, and fine boring can reach more than 150 m/min.
For precision boring that requires high precision and surface roughness, diamond boring machines are generally used, and tools of superhard materials such as cemented carbide, diamond and cubic boron nitride are used. Select a very small feed (0.02-0.08 mm/rev) and cutting depth (0.05-0.1 毫米), which is higher than the cutting speed of ordinary boring. The machining accuracy of precision boring can reach IT7~6, and the surface roughness is Ra0.63~0.08 microns. Before precision boring, prefabricated holes were subjected to rough boring, semi-fine boring and fine boring, leaving a thin and uniform machining allowance for precision boring.
Commonly used boring tools
Type of boring tool
According to the number of cutting edges, it can be divided into single-edged boring tools, double-edged boring tools and multi-edged boring tools; According to its machining surface, it can be divided into through hole boring tool, blind hole boring tool, stepped hole boring tool and end face boring tool; According to its structure, it can be divided into integral type, assembled type and adjustable type. 數位 1 shows the structure of a single-edge boring tool and a multi-edge boring tool.
Single edge boring tool
The structure of the single-edge boring tool head is similar to that of turning tools. The cutter head is installed in the tool holder, and the position of the cutter head is fixed with screws by manual manipulation according to the diameter of the hole being processed. The tool head is perpendicular to the axis of the boring bar to bore through holes, and the inclined installation can bore blind holes.
The single-edge boring tool has a simple structure, can correct the original hole axis deviation and small position deviation, and has a wide adaptability, which can be used for roughing, semi-finishing or finishing. 然而, the size of the boring hole is guaranteed by manually adjusting the overhang length of the cutter head, which is troublesome. 另外, only one main cutting edge participates in the work, 所以生產效率低, 多用於單件小批量生產.
雙刃鏜刀
雙刃鏜刀有兩個對稱的切割刃, 切削時徑向力可以互相抵消. 工件孔徑的直徑和精度由鏜刀的徑向尺寸保證.
CNC鏜床
鏜削刀具有三個基本要素: 可轉位刀片, 柄和鏜座. 鏜刀柄用於固定刀柄, 保持長度通常約為 4 乘以刀柄直徑. 鑲裝刀柄從鏜座伸出的長度稱為懸伸量 (鏜刀不受支撐的部分). The overhang determines the maximum depth of the boring hole and is the most important dimension of the boring tool. Excessive overhang can cause severe deflection of the shank, causing chattering, which damages the surface quality of the workpiece and may cause premature insert failure. These will reduce the processing efficiency.
For most machining applications, the user should choose a boring tool with the highest possible static and dynamic stiffness. The static stiffness reflects the ability of the boring tool to withstand the deflection caused by the cutting force, and the dynamic stiffness reflects the ability of the boring tool to suppress vibration.
The first part of this paper mainly analyzes the static stiffness of the boring tool. 本文資料來自作者對鏜刀偏轉的研究. 鏜刀的偏轉取決於刀柄材料的機械性質, 刀柄直徑和切削條件.
切削力
作用在鏜刀上的切削力可用旋轉測功機測量. 測量的力包括切向力, 進給力和徑向力. 與其他兩股勢力相比, 切向力的大小最大.
切向力垂直於刀片前刀面作用,並將鏜刀向下推. 值得注意的是,切向力作用在刀片尖端附近,而不是作用在刀柄的中心軸線上. 切向力偏離中心線產生力臂 (柄中心線到受力點的距離), 這會產生一個力矩,導致鏜孔刀具相對於其中心線扭轉.
進給力是第二大力,平行於刀桿中心線作用, 因此不會引起鏜刀的偏轉. 徑向力垂直於刀柄中心線作用,並將鏜刀推離正在加工的表面.
所以, 只有切向力和徑向力會使鏜刀偏轉. 已經使用了幾十年的經驗演算法是: 進給力和徑向力約為 25% 和 50% 切向力的, 分別. 今天, 然而, 這種比例關係不被認為是 “最優演算法” 因為各個切削力之間的關係取決於特定的工件材料及其硬度, 切削條件, 和鼻半徑.
鏜刀偏轉
鏜刀類似於一端固定的懸臂梁 (鏜座夾緊件) 另一端不受支撐 (工具列懸垂), 因此可以透過懸臂梁撓度計算公式計算鏜刀的撓度:
y=(F×L3)/(3埃×我)
在公式: F是合力; L 是懸垂 (單元: 英吋); E是彈性模量 (那是, 刀柄材料的楊氏模量) (單元: 磅/平方英寸, 磅每平方英寸);
I 為刀架截面的轉動慣量 (單元: 英吋4).
The formula for calculating the moment of inertia of the section of the boring bar is:
I=(π×D4)/64
Where: D is the outer diameter of the boring bar (單元: 英吋).
Example of deflection calculation of boring tool:
Processing conditions:
工件材質: AISI 1045 碳素鋼, hardness HB250;
Depth of cut: 0.1″,
Feed: 0.008 inches/rev;
Shank diameter: 1″,
The elastic modulus of the blade: E=30×106psi,
The overhang of the shank: 4″.
(1) Calculation of tangential force
Ft=396000×depth of cut×feed rate×power constant=396000×0.1×0.008×0.99=313.6 lbs
(2) Calculation of radial force
Fr=0.308×Ft=0.308×313.6=96.6 lbs
(3) Calculation of resultant force
F=328.1 lbs
(4) Calculation of the moment of inertia of the section:
I=(π×D4)/64=0.0491 in.4
(5) Calculation of the deflection of the boring tool
y=(F×L3)/(3埃×我)=0.0048″
分析了鏜刀撓度和截面轉動慣量的計算公式. 鑽孔時應遵循下列原則:
(1) 鏜刀的懸伸量應盡量小. 因為隨著懸垂增加, 撓度也增加. 例如, 當懸垂增加一個因子時 1.25, 撓度將增加近一倍 2 而刀柄外徑和切削參數保持不變.
(2) 鏜桿直徑應盡量大. 因為當柄部直徑增加時, 其截面的轉動慣量也會增加, 且偏轉量會減少. 例如, 當柄部直徑增加一倍時 1.25, 撓度將減少近乎 2.5 具有相同的懸伸和切削參數.
(3) 當懸垂時, 刀桿外徑和切削參數保持不變, 使用高彈性模量材料的鏜桿可以減少撓度.