Kategórie produktov
Štítky produktu
Cena sústruženia a frézovania titánových dielov
Konštrukčné diely zo zliatiny titánu (aplikovaný na: kozmonautika, lietadla, ar10, lekárske, čln) ťažkosti so spracovaním, slabá tuhosť, atď., deformačné faktory štrukturálneho spracovania. Z hľadiska výberu obrábacieho stroja, výber nástroja, efektívne chladenie, atď., je navrhnutá metóda riadenia na spracovanie deformácií slabo tuhých konštrukčných dielov. Materiály zo zliatiny titánu majú vynikajúce vlastnosti, ako je nízka hmotnosť, vysoká pevnosť, a odolnosť voči vysokej teplote.
Konštrukčné diely zo zliatiny titánu (aplikovaný na: kozmonautika, lietadla, ar10, lekárske, čln) ťažkosti so spracovaním, slabá tuhosť, atď., deformačné faktory štrukturálneho spracovania. Z hľadiska výberu obrábacieho stroja, výber nástroja, efektívne chladenie, atď., je navrhnutá metóda riadenia na spracovanie deformácií slabo tuhých konštrukčných dielov. Materiály zo zliatiny titánu majú vynikajúce vlastnosti, ako je nízka hmotnosť, vysoká pevnosť, a odolnosť voči vysokej teplote. Napríklad, the use of TC18 titanium alloy instead of high-strength structural steel for landing gear can reduce the weight of the aircraft structure by about 15%. Preto, a large number of new high-strength titanium alloys are used in the main bearing parts of advanced foreign aircraft. Napríklad, titanium alloy accounts for about 21% of the structural materials of the American B-1 bomber; The amount of titanium used in Russia's Il-76 aircraft reached 12.5% of the weight of the airframe structure. From the development trend, the use of titanium alloys in European and American countries is gradually increasing, and it also shows that a large number of titanium alloys are used, especially some new titanium alloys have become the development direction of aviation design.
Avšak, most aerospace products use thin-walled parts, which have relatively complex structures and high precision requirements. The rigidity of the parts is poor due to the thin wall. Under the action of cutting force, it is easy to produce bending deformation during processing, and the wall thickness is inconsistent. V súčasnosti, the commonly used method in enterprises is repeated milling in finishing. Due to the low thermal conductivity of titanium alloys, low modulus of elasticity (about 1/2 of steel), and high chemical activity, the small margin cannot be milled away at all, and the phenomenon of "less cutting" often occurs. In order to ensure that the size of the part can only be polished by hand, the processing cycle of the part is greatly increased, and the surface of the part may be overburned.
1. Cutting solutions for titanium alloy structural parts
The main factors affecting the processing of titanium alloy weak rigid structures are:
Machine rigidity, výber nástroja, process parameters, efektívne chladenie, atď. V procese spracovania, various factors interact, and the accumulation of deformation errors results in poor quality of processed weak rigid structural parts, and processing deformation is difficult to control.
2.1 Selection of machine tools
The rigidity of the machine tool-fixture-tool system should be good, the gap between the various parts of the machine tool should be adjusted well, and the radial runout of the spindle should be small.
2.2 Selection of tools
The increase in cutting productivity is mainly the result of the development and application of new tool materials. In the past few decades, cutting tools have been greatly developed, including cemented carbide coatings, ceramics, cubic boron nitride, and polycrystalline diamond. These are effective for processing cast iron, steel and superalloys. But none of the tools can improve the machinability of titanium alloys. This is because tool materials for cutting titanium alloys require very important properties. These include:
1) Good heat resistance to resist high stress;
2) Good thermal conductivity to reduce thermal gradient and thermal shock;
3) Good chemical inertness to reduce the tendency of chemical reaction with titanium;
4) Good toughness and fatigue resistance to adapt to the chip segmentation process. In almost all titanium alloy cutting processes, tungsten carbide (WC/co) carbide tools are considered the best. Some tests have shown that the wear rate of all carbide-coated tools is lower than those of uncoated tools.
Although the quality of current ceramic tools has been improved and more and more used to process difficult-to-cut materials, especially those high-temperature alloys (such as nickel-based high-temperature alloys). Avšak, due to its poor thermal conductivity, low fracture toughness and reaction with titanium, they did not replace cemented carbide and high-speed steel. Superhard cutting tool materials (cubic boron nitride and polycrystalline diamond) have low wear rates when cutting titanium alloys, and thus show good performance.
The main problem in the milling process of titanium alloy weakly rigid structural parts is the milling deformation of the thin wall. Due to the low modulus of elasticity of titanium alloy and the relatively large cutting force, the thin wall is easily deformed by the milling force during the milling process. The result is that the actual thickness of the thin wall after processing is greater than the theoretical thickness. The solution to this problem should be to reduce as much as possible the force from the direction perpendicular to the surface being machined during the milling process.
2.3 Cutting fluid for turning titanium alloy
Titanium alloy has the advantages of high strength, oxidation resistance, high temperature resistance, atď., while meeting the requirements of high performance use, it also brings many problems to cutting. When cutting titanium alloy, in order to reduce the cutting temperature, a large amount of cooling-based cutting fluid should be poured into the cutting area to take away the heat of the cutting edge and flush away the chips to reduce the cutting force. Preto, the requirements for cutting fluid are large thermal conductivity, large heat capacity, fast flow rate, and large flow rate. The best method of cooling is the high-pressure cooling method, and the cutting fluid flow rate is not less than 15-20L/min. There are three types of cutting fluids generally used, namely water or alkaline solutions, water-based soluble oily solutions and non-water soluble oily solutions.
Kontaktuj nás
Čaká sa na váš e-mail, odpovieme vám v rámci 12 hodiny s cennými informáciami, ktoré ste potrebovali.
SÚVISIACE PRODUKTY
Prototyp ovládacej skrinky autobatérie z hliníkovej zliatiny
kategória produktu: Aluminum Prototype
Product name: Customized outer box of new energy vehicle battery
Processing method: CNC processing of aluminum alloy cavity
Material: aluminum alloy
Surface treatment: leštenie a odhrotovanie, surface sandblasting
Processing cycle: 3-7 seven working days
Testing standard: 3D drawings provided by the customer
Data format: STP/IGS/X.T/PRO
Product features: jemný povrch, vysoký lesk, jemné spracovanie, leštenie a odhrotovanie, povrchové pieskovanie
Charakteristika a hlavné použitie hliníkových profilov
Hliníkové profily sú klasifikované podľa použitia: Hliníkové profily na stavbu: architektonické hliníkové profily zahŕňajú najmä hliníkové profily pre dvere a okná a hliníkové profily pre závesné steny;
Hliníkový profil radiátora: používa sa hlavne na odvádzanie tepla rôznych výkonových elektronických zariadení, LED osvetlenie, a počítačové digitálne produkty.
Všeobecný priemyselný hliníkový profil označuje:
Používa sa hlavne v priemyselnej výrobe a výrobe, ako sú dopravné pásy montážnej linky, kladkostroje, dávkovače lepidla, testovacie zariadenie, police, atď., elektronický strojársky priemysel a čisté priestory, atď.
Klasifikácia a údržba frézovacích strojov
Frézka je široká škála obrábacích strojov. Lietadlo (horizontálna rovina, vertikálna rovina) možno spracovať na frézke; Drážka (kľúčová drážka, T-drážka, rybinová drážka, atď.); Časti prevodovky (ozubené kolesá, drážkové hriadele, ozubené kolesá); Špirálový povrch (niť, špirálová drážka) a rôzne zakrivené povrchy. Navyše, dá sa použiť aj na opracovanie povrchu a vnútorného otvoru otočného telesa a odrezanie diela.
kontrolovať presnosť frézovaných dielov
Optimalizácia využitia CNC frézovania je založená na vlastnostiach frézovaných dielov. Prostredníctvom technickej a ekonomickej analýzy a výskumu procesu CNC frézovania dielov, vedecký, Je vytvorený primeraný a presný matematický model optimalizácie parametrov frézovania, a prijali sa vhodné optimalizačné algoritmy.
Prevádzková bezpečnosť CNC obrábania kovových dielov
CNC obrábacie stroje sú pokročilé spracovateľské zariadenia s vysokým stupňom automatizácie a zložitejšou štruktúrou. Aby bolo možné naplno využiť prevahu obrábacích strojov, zlepšiť efektivitu výroby, spravovať, použitie, a opravy CNC obrábacích strojov, dôležitá je najmä kvalita technického personálu a civilizovaná výroba. Okrem oboznámenia sa s výkonom CNC obrábacích strojov, prevádzkovatelia musia pestovať dobré pracovné návyky a dôsledné pracovné štýly aj v civilizovanej výrobe, a majú dobré odborné kvality, zmysel pre zodpovednosť a duch spolupráce. Počas prevádzky by sa malo vykonať nasledovné: