CNC加工インペラ技術とクランプ計画
資料によると, インペラの構造的特徴と技術的要件, CNC加工計画が分析および検討されます, 機械加工工程も含めて, 技術的な問題と講じられた技術的措置. インペラの一端に必要なプロセス治具ボスを追加することをお勧めします。, インペラ加工の要件を満たす特別な治具金型を設計および開発します。.
資料によると, インペラの構造的特徴と技術的要件, CNC加工計画が分析および検討されます, 機械加工工程も含めて, 技術的な問題と講じられた技術的措置. インペラの一端に必要なプロセス治具ボスを追加することをお勧めします。, インペラ加工の要件を満たす特別な治具金型を設計および開発します。.
マイクロCNC加工技術は、金属部品の表面を超仕上げする全自動方式を採用しています。. 一種のメカノケミカル作用により, 金属部品表面の1~40μmの物質を除去, 加工面の表面品質はISO規格のN1レベル以上. マイクロCNC加工技術は主に超精密研磨と超精密光沢仕上げの2つの分野で使用されます。.
通常の CNC フライス盤にも CNC オペレーティング システムが搭載されています (ファナックなど, シーメンス, 中国華中または広州, 等), 3 つの送り軸と回転スピンドルも備えています. それらの処理モードのジオメトリはまったく同じです, 基本的に同じ処理能力を実現できます.
CNC工作機械部品加工工程中, 加工される部品の精度は製品自体の品質に直接影響します。. 機械部品や小型機器部品の中には、非常に高い加工精度が求められるものがあります。. CNC工作機械の加工精度向上が課題解決の鍵. 比較調査と分析を通じて, 以下のような対策が考えられます:
ステンレスのフライス加工の特徴は、: ステンレス鋼は強力な接着力と融着力を持っています, フライスの歯に切り粉が付着しやすい, フライス加工条件が悪化します;
アップミリングの場合, カッターの歯が最初に硬化した表面上を滑ります, これにより加工硬化の傾向が高まります; フライス加工時, 衝撃や振動が大きい, そのため、フライスカッターの刃が欠けたり摩耗しやすくなります。.
ステンレス鋼をフライス加工する場合のハイスフライスの切り込み量とフライスの選択を設定します。
初めに, クーラントが切りくずを急速に冷却し、ブレードに溶け込んでしまいます。, 工具寿命の短縮につながります;
送り速度が高すぎると材料の蓄積が発生します, 一方、送り速度が低すぎると、工具とワークピースの間に摩擦が発生します。, オーバーヒートの原因にもなります.
実際には, ナイフの刃を避けるために, CNC加工ステンレス鋼の切削熱が必要. ステンレス鋼フライス用, チップが明るい茶色になるように、適切なミリング速度を選択する必要があります。.
ステンレス部品の加工方法? CNC加工技術とステンレス部品の応用
ステンレス鋼は、強度、耐熱性、耐腐食性が重要な場所で広く使用できる汎用性の高い機械加工材料です。. しかし, ステンレス鋼合金を優れた構造材料にするのと同じ特性により、それらの機械加工に使用されるプロセスも複雑になります. 切削工具の特性を慎重に組み合わせる, 形状と切削パラメータの適用により、ステンレス鋼の機械加工作業の生産性が大幅に向上します。.
荒削りながらも, 汎用工作機械でのステンレス鉄材の中仕上げ・仕上げ加工はそれほど難しくありません. しかし, 高い切削抵抗の問題をどのように解決するか, 高温, 深刻な工具摩耗と低い耐久性, 高生産性の特殊自動旋盤によるステンレス鋼の切削では、表面品質が悪く生産性が低い. 1 回の回転操作で図面の要件を満たすのは困難. マルテンサイト系ステンレス鋼材を自社工場でCNC加工中: 工具の材質選びから, 工具の形状と構造の選択; カット量の選択; ブランク材の送り状態; 潤滑剤と冷却剤の選択についてはテストを繰り返しました。, 一定の成功体験が得られている. 3Cr13ステンレス鉄を例に挙げます。.