Produktkategorier
Produkt Tags
drejning af præcisionsdele af forskellige materialer
Forskellige drejematerialer (aluminiumslegering, rustfrit stål, kobber, titanlegering) har forskellige fejlkompensationsindstillinger. Moderne maskinfremstillingsteknologi udvikler sig i retning af høj effektivitet, høj kvalitet, høj præcision, høj integration og høj intelligens. Præcisions- og ultrapræcisionsbehandlingsteknologi er blevet den vigtigste komponent og udviklingsretning for moderne maskinfremstilling, og det er blevet en nøgleteknologi til at forbedre den internationale konkurrenceevne. Med den brede anvendelse af præcisionsbearbejdning, drejebearbejdningsfejl er blevet et varmt forskningsemne. Da den termiske fejl og den geometriske fejl optager langt størstedelen af de forskellige fejl i værktøjsmaskinen, reducere disse to fejl, især den termiske fejl, er blevet hovedmålet.
Kategori: CNC drejning
Tag: CNC drejning
Forskellige drejematerialer (aluminiumslegering, rustfrit stål, kobber, titanlegering) har forskellige fejlkompensationsindstillinger. Moderne maskinfremstillingsteknologi udvikler sig i retning af høj effektivitet, høj kvalitet, høj præcision, høj integration og høj intelligens. Præcisions- og ultrapræcisionsbehandlingsteknologi er blevet den vigtigste komponent og udviklingsretning for moderne maskinfremstilling, og det er blevet en nøgleteknologi til at forbedre den internationale konkurrenceevne. Med den brede anvendelse af præcisionsbearbejdning, drejebearbejdningsfejl er blevet et varmt forskningsemne. Da den termiske fejl og den geometriske fejl optager langt størstedelen af de forskellige fejl i værktøjsmaskinen, reducere disse to fejl, især den termiske fejl, er blevet hovedmålet.
Error compensation technology (ECT for short) has emerged and developed with the continuous development of science and technology. The loss caused by the thermal deformation of the machine tool is considerable. Derfor, it is extremely necessary to develop a high-precision, low-cost thermal error compensation system that can meet the actual production requirements of the factory to correct the thermal error between the spindle (or workpiece) and the cutting tool. In order to improve the machining accuracy of machine tools, reduce waste, increase production efficiency and economic benefits.
Basic definition of turning error compensation
The basic definition of error compensation is to artificially create a new error to offset or greatly reduce the original error that is currently a problem. Through analysis, statistics, induction and mastering the characteristics and laws of the original error, the error mathematical model is established. Try to make the artificial error and the original error have the same value and opposite direction, so as to reduce the processing error and improve the dimensional accuracy of the part.
The earliest error compensation was realized by hardware. Hardware compensation is mechanical fixed compensation. To change the compensation amount when the machine tool error changes, it is necessary to re-make parts, correct the ruler or re-adjust the compensation mechanism. Hardware compensation has the disadvantages of not being able to solve random errors and lack of flexibility. The characteristic of the developed software compensation is to comprehensively use the advanced technology and computer control technology of various disciplines to improve the machining accuracy of the machine tool without any changes to the machine tool itself. Software compensation overcomes many difficulties and shortcomings of hardware compensation and pushes the compensation technology to a new stage.
Error compensation characteristics of different turning materials
Error compensation (teknologi) has two main characteristics: scientific and engineering.
The rapid development of scientific error compensation technology has greatly enriched precision mechanical design theory, precision measurement and the entire precision engineering, and has become an important branch of this discipline. The technologies related to error compensation include detection technology, sensing technology, signal processing technology, photoelectric technology, material technology, computer technology and control technology. As a new technology branch, error compensation technology has its own independent content and characteristics. Further research on error compensation technology to make it theorized and systematized will have very important scientific significance.
The engineering meaning of engineering error compensation technology is very significant, it contains three meanings:
One is that the use of error compensation technology can easily achieve the accuracy level that "hard technology" can cost a lot to achieve; The second is to use error compensation technology, which can solve the accuracy level that "hard technology" usually cannot achieve; The third is that if error compensation technology is adopted under the condition of meeting certain accuracy requirements, the cost of instrument and equipment manufacturing can be greatly reduced, and it has very significant economic benefits.
The generation and classification of thermal errors in turning
With the further improvement of machine tool accuracy requirements, the proportion of thermal error in the total error will continue to increase, and the thermal deformation of machine tools has become a major obstacle to improving machining accuracy. The thermal error of the machine tool is mainly caused by the thermal deformation of the machine tool components caused by the internal and external heat sources of the machine tool such as motors, bearings, transmission parts, hydraulic systems, ambient temperature, and coolant. The geometric error of the machine tool comes from the manufacturing defects of the machine tool, the fit error between the machine parts, the dynamic and static displacement of the machine parts, og så videre.
Basic method of error compensation
In summary and related references, it can be known that turning machining errors are generally caused by the following factors:
Thermal deformation error of machine tool;
Geometric errors of machine tool parts and structures;
Error caused by cutting force;
Turning tool wear error;
Other error sources, such as the servo error of the machine tool axis system, the numerical control interpolation algorithm error, etc.
There are two basic methods to improve the accuracy of machine tools: error prevention method and error compensation method. The error prevention method attempts to eliminate or reduce possible sources of error through design and manufacturing methods. The error prevention method is effective to reduce the temperature rise of the heat source, balance the temperature field and reduce the thermal deformation of the machine tool to a certain extent. But it is impossible to completely eliminate thermal deformation, and the cost is very expensive; The application of thermal error compensation law opens up an effective and economical way to improve the accuracy of machine tools.
Related conclusions
The research of turning machining errors is the most important part and development direction in modern machinery manufacturing, og det er blevet en nøgleteknologi til at forbedre den internationale konkurrenceevne. Errors are multifaceted, and the analysis and research of thermal errors is helpful to improve turning accuracy and technical requirements.
The error compensation technology can meet the high precision and low cost of the actual production requirements of the factory. Thermal error compensation technology can correct the thermal drift error between the spindle (or workpiece) and the cutting tool, improve the machining accuracy of the machine tool, reduce waste, increase production efficiency and economic benefits.
Kontakt os
Venter på din e-mail, vi vil svare dig inden for 12 timer med værdifuld information, du havde brug for.
RELATEREDE PRODUKTER
CNC drejebænk Drejning Complex Shape Parts Groove
Et eksempel på en større CNC drejebænk drejet del.
Den venstre del af billedet er en større vendedel i rustfrit stål. Materiale SUS304, sekskantet modsat side H (højde) 45mm, drejetråd, dreje indervæg, gennemgående hul i to niveauer. Selvom formen og installationen er enkel, bearbejdningsvolumen ved drejning er stor. Det store billede er vedhæftet.
Fixtur og værktøjsindstilling af drejedele
Opspænding af drejeværktøj
1) Skaftet på drejeværktøjet må ikke strække sig for langt fra værktøjsholderen, og den generelle længde bør ikke overstige 1.5 gange værktøjsskaftets højde (undtagen vendehuller, riller, etc.)
2) Centerlinjen på drejeværktøjets værktøjsstang skal være vinkelret eller parallel med skæreretningen.
3) Justering af værktøjsspidsens højde:
Drejebænk CNC-bearbejdning metal lille, store komponenter Pris
Longer size computer lathe machining parts
This is a long CNC machined part. Fordi produktet er for stort, kun et delvist nærbillede blev taget, og det vedhæftede fuldstændige billede er forstørret.
Specification on the left picture 25MM*300MM
Both ends processing, middle polishing
Product material on the left: aluminum
Machinable materials: aluminium, jern, rustfrit stål, kobber, etc.
OEM 304 Rustfri drejepræcisionskomponent
Vores firma producerer SUS303, 304, SUS400-serien, 316F præcisionsdrejedele i rustfrit stål og drejebænke i forskellige specifikationer og størrelser.
Produktet til venstre er en repræsentativ drejningsdel i rustfrit stål produceret af vores virksomhed:
Drejedele i rustfrit stål med gevind, trin og fræsede sekskantede kanter er lavet af SUS303 rustfrit stål, gevindspecifikation M4,
Maksimal ydre diameter (dvs dens hoveddiameter): 10mm, total length 38mm
Features: Aksial planfræsning sekskantet, stor drejevolumen, høj præcision, halvfabrikata færdiggøres med automatisk drejebænk + hydraulisk fræsemaskine fræser sekskantet flade + trådvalsemaskine rulle. Denne drejedel bruges i et velkendt elektrisk apparat til fastgørelse og justering.
Prisen på drejning og fræsning af titanium dele
Titaniumlegering strukturelle dele (anvendt til: rumfart, fly, ar10, medicinsk, båd) bearbejdningsvanskeligheder, svag stivhed, etc., strukturelle bearbejdningsdeformationsfaktorer. Fra aspekterne ved valg af værktøjsmaskiner, valg af værktøj, effektiv køling, etc., der foreslås en kontrolmetode til behandling af deformation af svagt stive konstruktionsdele. Titaniumlegeringsmaterialer har fremragende egenskaber såsom lav vægt, høj styrke, og høj temperaturbestandighed.